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Pricing is a major strategy for a retailer to obtain its maximum profit. Furthermore, under most market
behaviors, one can easily find that a vendor provides a credit period (for example 30 days) for buyers to
stimulate the demand, boost market share or decrease inventories of certain items. Therefore, in this
paper, we establish a deterministic economic order quantity model for a retailer to determine its optimal
selling price, replenishment number and replenishment schedule with fluctuating demand under two
levels of trade credit policy. A particle swarm optimization is coded and used to solve the mixed-integer
nonlinear programming problem by employing the properties derived in this paper. Some numerical
examples are used to illustrate the features of the proposed model.
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1. Introduction Jaber and Osman (2006) proposed a two-level supply chain
In the inventory models developed, it is often assumed that
payment will be made to the vendor for the goods immediately
after receiving the consignment. Because the permissible delay in
payments can provide economic sense for vendors, it is possible
for a vendor to allow a certain credit period for buyers to stimulate
the demand to maximize the vendors-owned benefits and advan-
tage. Recently, several researchers have developed analytical
inventory models with consideration of permissible delay in pay-
ments. Goyal (1985) first studied an EOQ model under the condi-
tions of permissible delay in payments. Chung (1989) presented
the discounted cash flows (DCF) approach for the analysis of the
optimal inventory policy in the presence of the trade credit. Later,
Shinn, Hwang, and Sung (1996) extended Goyal’s (1985) model
and considered quantity discounts for freight cost. Chung (1997)
presented a simple procedure to determine the optimal replenish-
ment cycle to simplify the solution procedure described in Goyal
(1985). Teng (2002) provided an alternative conclusion from Goyal
(1985), and mathematically proved that it makes economic sense
for a well-established buyer to order less quantity and take the
benefits of the permissible delay more frequently. Huang (2003)
developed an EOQ model in which a supplier offers a retailer the
permissible delay period M, and the retailer in turn provides the
trade credit period N (with N 6M) to his/her customers. He then
obtained the closed-form optimal solution for the problem.
ll rights reserved.

ye).
model with delay in payments to coordinate the players’ orders
and minimize the supply chain costs. Jaber (2007) then incorpo-
rated the concept of entropy cost into the EOQ problem with
permissible delay in payments. In real situations, ‘‘time’’ is a signif-
icant key concept and plays an important role in inventory models.
Certain types of commodities deteriorate in the course of time and
hence are unstable. As a result, while determining the optimal
inventory policy for product of that type, the loss due to deteriora-
tion cannot be ignored. To accommodate more practical features of
the real inventory systems, Aggarwal and Jaggi (1995) and Hwang
and Shinn (1997) extended Goyal’s (1985) model to consider the
deterministic inventory model with a constant deterioration rate.
Since the occurrence of shortages in inventory is a very nature phe-
nomenon in real situations, Jamal, Sarker, and Wang (1997), Sarker,
Jamal, and Wang (2000), Chang and Dye (2000), Chang, Hung, and
Dye (2002) extended Aggarwal and Jaggi’s (1995) model to allow
for shortages and makes it more applicable in real world. Chang,
Ouyang, and Teng (2003) then extended Teng’s (2002) model,
and established an EOQ model for deteriorating items in which
the supplier provides a permissible delay to the purchaser if the
order quantity is greater than or equal to a predetermined quantity.
By considering the difference between unit selling price and unit
purchasing cost, Ouyang, Chuang, and Chuang (2004) developed
an EOQ model with noninstantaneous receipt under conditions of
permissible delay in payments. Recently, Taso and Sheen (2007)
developed a finite time horizon inventory model for deteriorating
items to determine the most suitable retail price and appropriate
replenishment cycle time with fluctuating unit purchasing cost

http://dx.doi.org/10.1016/j.cie.2010.10.010
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and trade credit. Chang, Wu, and Chen (2009) established an
inventory model to determine the optimal payment time, replen-
ishment cycle and order quantity under inflation.

However, all the above models make an implicit assumption
that the demand rate is constant over an infinite planning horizon.
This assumption is only valid during the maturity phase of a
product life cycle. During the introduction and growth phase of a
product life cycle, the firms face increasing demand with little
competition. Some researchers Resh, Friedman, and Barbosa
(1976), Donaldson (1977), Dave and Patel (1981), Sachan (1984),
Goswami and Chaudhuri (1991), Goyal, Morin, and Nebebe
(1992), Chakrabarty, Giri, and Chaudhuri (1998) suggest that the
demand rate can be well approximated by a linear form. A linear
trend demand implies an uniform change in the demand rate of
the product per unit time. This is a fairly unrealistic phenomenon
and it seldom occurs in the real market. One can usually observe
in the electronic market that the sales of items increase rapidly
during the introduction and growth phase of the life cycle because
there are few competitors in market. Recently, Yang, Teng, and
Chern (2002) established an optimal replenishment policy for
power-form demand rate and proposed a simple and computation-
ally efficient method in a forward recursive manner to find the
optimal replenishment strategy. Khanra and Chaudhuri (2003)
advise that the demand rate should be represented by a continuous
quadratic function of time in the growth stage of a product life
cycle. They also provide a heuristic algorithm to solve the problem
when the planning horizon is finite. To achieve maximum profit,
Chen and Chen (2004) presented an inventory model for a deteri-
orating item with a multivariate demand function of price and
time. Their model is solved with dynamic programming techniques
by adjusting the selling price upward or downward periodically.
Chen, Hung, and Weng (2007a, 2007b) dealt with the inventory
model under the demand function following the product-life-cycle
shape over a fixed time horizon. Skouri and Konstantaras (2009)
studied an order level inventory model when the demand is
described by a three successive time periods that classified time
dependent ramp-type function.

In this paper, to obtain robust and general results, we will extend
the constant demand to a generalized time varying demand, which
is suitable not only for the growth stage but also for the maturity
stage of a product life cycle. In addition, we assume that supplier
offers retailer a trade credit period M, and retailer in turn provides
a trade credit period N (with N 6M) to his/her customers. The
lot sizing problem is then to find the optimal pricing and
replenishment strategy that will maximize the present value of
total profit. A traditional particle swarm optimization is coded and
used to solve the mixed-integer nonlinear programming problem
by employing the properties derived in this paper. Finally, numerical
examples will be used to illustrate the results.

2. Assumptions and notations

The mathematical model in this paper is developed on the basis
of the following assumptions and notations.

2.1. Notations

I(t) = the inventory level at time t.
A = ordering cost, $/per order.
c = unit purchasing cost, $/per unit.
p = unit selling price (a decision variable), $/per unit, defined in
the interval [0,pu].
g(t,p) = the demand rate at time t and price p with g(t,p) =
a(p)f(t), where f(t) is positive in the planning horizon [0,H]
and a(p) is a non-negative, continuous, convex, decreasing func-
tion of the selling price in [0,pu].
r = the discount rate.
h = holding cost excluding interest charges, $/unit/year.
Ie = interest which can be earned, $/year.
Ir = interest charges which are invested in inventory, $/year.
M = the retailer’s trade credit period offered by supplier in
years.
N = the customer’s trade credit period offered by retailer in
years, where N 6M.
n = the number of replenishment periods during the planning
horizon.
ti = the ith replenishment time (a decision variable), i = 1,2, . . .,
n, with 0 = t0 < t1 < t2 < � � � < tn = H.
Ti = the length of ith replenishment period.
Qi = the order quantity in the ith replenishment period.
TP(n,p,t) = the present value of total profit, where t =
{t1, t2, . . . , tn�1}.

2.2. Assumptions

1. The inventory system involves in only one item over a known
and finite planning horizon H.

2. The replenishment occurs instantaneously at an infinite rate.
3. The items deteriorate at a constant rate of deterioration h,

where 0 < h� 1. There is no repair or replacement of deterio-
rated units during the planning horizon. The items will be with-
drawn from the warehouse immediately as they deteriorate.

4. Before the replenishment account is settled, the retailer can use
the sales revenue to earn interest with an annual rate Ie. How-
ever, beyond the fixed credit period, the product still in stock is
presumed to be financed with an annual rate Ir.

5. The retailer can accumulate revenue and earn interest after his/
her customer pays for the amount of purchasing cost to the
retailer until the end of the trade credit period offered by the
supplier. That is, the retailer can accumulate revenue and earn
interest during the period N to M with rate Ie under the condi-
tion of trade credit.

3. Model formulation

As shown in Fig. 1, the depletion of the inventory occurs due to
the combined effects of the demand and deterioration in the inter-
val [ti�1, ti]. Hence, the variation of inventory level, I(t), with respect
to time can be described by the following differential equation:

dIðtÞ
dt
¼ �hIðtÞ � aðpÞf ðtÞ; ti�1 6 t < ti; ð1Þ

with boundary condition I(ti) = 0, i = 1,2, . . . ,n. The solution of (1)
can be represented by

IðtÞ ¼ e�ht
Z ti

t
aðpÞf ðtÞehu du; ti�1 6 t < ti: ð2Þ

Then, applying (2), the present value of the holding cost in the ith
replenishment period, denoted by HCi, i = 1,2, . . . ,n, can be written
as

HCi ¼ h
Z ti

ti�1

e�rte�ht
Z ti

t
aðpÞf ðtÞehu dudt: ð3Þ

The present value of the purchase cost during the ith replenishment
period, denoted by PCi, i = 1,2, . . . ,n, is

PCi ¼ ce�rti�1

Z ti

ti�1

aðpÞf ðtÞehðt�ti�1Þdt: ð4Þ



Fig. 1. The retailer’s inventory level and accumulation of interest earned. A solid line denotes the inventory level at time t in the ith replenishment period, the area enclosed
by dashed line represents the interest earned in the ith replenishment period.
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The present value of the sales revenue in the ith replenishment
period, denoted by SRi, i = 1,2, . . . ,n, is

SRi ¼ p
Z ti

ti�1

e�rtaðpÞf ðtÞdt; i ¼ 1;2; . . . ;n: ð5Þ

In this paper, the parameters M and N can be seen as exogenous
variables. Regarding the exogenous variables, three possibilities
may arise: Case 1: N < M 6 ti � ti�1, Case 2: N 6 ti � ti�1 < M or Case
3: ti � ti�1 < N 6M. The relationship between credit period and
replenishment period is illustrated in Fig. 1. The present value of
interest earned (IE) and interest charges (IC) for each case are
presented in Appendix A.

As shown above, we can now formulate the present value of
total profit for a given positive integer n as follows:

TPðp;tjnÞ ¼
sales revenue�purchase cost�holding cost

�interest chargesþ interest earned�ordering cost

� �

¼
Xn

i¼1

SRi�PCi�HCi� ICiþ IEi� e�rti�1 A
� �

; ð6Þ

where

IEi ¼
IEi1; ti � ti�1 P M

IEi2; N 6 ti � ti�1 < M

IEi3; ti � ti�1 < N

8><
>:

and

ICi ¼
ICi1; ti � ti�1 P M

ICi2; N 6 ti � ti�1 < M

ICi3; ti � ti�1 < N:

8><
>:
The objective of this paper is to determine the optimal replenish-
ment points ti and the optimal selling price to maximize the present
value of total profit of the inventory system. Hence, it is a n dimen-
sional decision-making problem for a retailer and the problem can
be mathematically formulated as follows:

Maximize TPðp; tjnÞ
subject to c < p 6 pu;

ti�1 < ti; i ¼ 1;2; . . . ;n;

t0 ¼ 0; tn ¼ H:

The formulated optimization model is a nonlinear programming
problem with nonnegative constraints. Since it is difficult to solve
analytically, we adopt an evolutionary computation algorithm to
solve the problem. In this paper, an algorithm based on particle
swarm optimization (PSO) is proposed to find the optimal pricing
and replenishment schedule. The algorithm is similar to other
population-based algorithms like Genetic algorithms but, there
is no direct combination of individuals of the population. Instead,
it relies on the social behavior of particle. In the next section, we
will introduce how the PSO can be used to solve the problem.
4. Solution procedure

4.1. The background of particle swarm optimization

The PSO is an algorithm for finding optimal regions of com-
plex search spaces through the interaction of individuals in a
population of particles. It was proposed by Eberhart and Kennedy
(1995) and Kennedy and Eberhart (1995) and has been widely
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used in finding solutions for optimization problems. The PSO
algorithm is inspired by social behavior of bird flocking or fish
schooling. In PSO, the potential solutions, called particles, fly
through the problem space by following the current optimum
particles. Assumed that our search space is d-dimensional, PSO
is initialized with a population of random particles (solutions)
and then searches for optimum by updating generations, where
the population is the number of particles in the problem space.
During every iteration, each particle is updated by following
the two best values. The first one is the best solution so far
reached by the particle, this best value is a personal best and
called pbest. The other one is the current best solution, obtained
so far by any particle in the population. This best value is a global
best and called gbest. With pbest and gbest obtained, the particle
will have velocity, which directs the flying of the particle. In each
generation, a particle can update its velocity and position based
on the following equations:
v j
kþ1¼v v j

kþu1�rand�ðpbesti
k�xi

kÞþu2�rand� gbestk�xi
k

� �h i
ð7Þ

and

xi
kþ1 ¼ xi

k þ v i
kþ1; ð8Þ
where v i
k is the velocity of ith particle at the kth iteration, xi

k is
current the position of the ith particle, pbesti

k is the best searching
experience so far of ith particle at the kth iteration, gbestk is best
result obtained at the kth iteration, u1 and u2 are acceleration
constants, rand is a random number between 0 and 1 and
v ¼ 2
�u1 �u2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 þu2 � 4Þðu1 þu2Þ

p
þ 2

�� �� : ð9Þ

The parameters u1 and u2 in (7) are scalar constants that weight
influence of particles’ own experience and the social knowledge.
The parameter v in (7) is the so called constriction factor, which
is used to prevent a particle from exploring too far into the search
space. In general, the common value for u1 + u2 is set to 4.1 and
the constriction factor v is approximately 0.729. Lastly, the algo-
rithm will check the results every iteration until the best solution
is found or termination conditions are satisfied.

In the PSO algorithm, velocities are clamped at each iteration to
lie within [�Vmax,Vmax] on each dimension, which is a parameter
specified by the user. If the sum of accelerations causes the velocity
on that dimension to exceed Vmax, then this velocity is limited to
Vmax. This helps particles comb the search space rather than poten-
tially take huge iterative steps that might cause some information
to be missed. Then, the search procedure of the particle swarm
optimization is summarized as follows:

Step 1 Initialize I particles with random positions and velocities
on d-dimensions in the search space, where I is the num-
ber of particles.

Step 2 Evaluate the fitness of all particles.
Step 3 Keep track of the locations where each individual had its

highest fitness so far.
Step 4 Keep track of the position with the global best fitness.
Step 5 Update the velocity of each particle, according to (7) and

(9).
Step 6 Update the position of each particle, according to (8).
Step 7 Terminate if the standard deviation of fitness is less than �

(e.g. 10�5) or the maximum number of iterations (e.g.
1000) is reached, otherwise go to Step 2.
4.2. Solving the pricing and replenishment scheduling problem

For any given feasible replenishment schedule, 0 = t0 < t1 <
t2 < � � � < tn�1 < tn = H, to acquire optimal selling price that maxi-
mizes TP(pjn,t), the value of p� should be selected to satisfy

dTPðpjn; tÞ
dp

¼ d
dp

Xn

i¼1

SRi � PCi � HCi þ IEi � ICi � Ae�rti�1
� 	

¼ 0:

ð10Þ

After taking the first and second derivatives of SRi � PCi � HCi, IEi, ICi

and Ae�rti�1 with respect to p yields

dðSRi � PCi � HCiÞ
dp

¼ ½aðpÞ þ pa0ðpÞ�
Z ti

ti�1

e�rt f ðtÞdt

� a0ðpÞ ce�rti�1

Z ti

ti�1

ehðt�ti�1Þf ðtÞdt

(

þ h
Z ti

ti�1

Z ti

t
e�rt�hðt�uÞf ðtÞdudt

)
; ð11Þ

d2 SRi � PCi � HCið Þ
dp2 ¼ 2a0ðpÞ þ pa00ðpÞ½ �

Z ti

ti�1

e�rtf ðtÞdt

� a00ðpÞ ce�rti�1

Z ti

ti�1

eh t�ti�1ð Þf ðtÞdt

(

þ h
Z ti

ti�1

Z ti

t
e�rt�hðt�uÞf ðtÞdudt

)
; ð12Þ

dIEi

dp
¼

aðpÞþpa0ðpÞ½ �Ie
RMþti�1

Nþti�1
e�rtðM� tþ ti�1Þf ðtÞdt; ti� ti�1 P M

aðpÞþpa0ðpÞ½ �Ief
R ti

ti�1
e�rtðMþ ti�1� tiÞf ðtÞdt

þ
R ti

Nþti�1
e�rtðti� tÞf ðtÞdtg; N6 ti� ti�1 <M

aðpÞþpa0ðpÞ½ �Ie
R ti

ti�1
e�rtðM�NÞf ðtÞdt; ti� ti�1 <N

8>>>>>><
>>>>>>:

ð13Þ

d2IEi

dp2 ¼

2a0ðpÞþpa00ðpÞ½ �Ie
RMþti�1

Nþti�1
e�rtðM� tþ ti�1Þf ðtÞdt; ti� ti�1 P M

2a0ðpÞþpa00ðpÞ½ �Ie
R ti

ti�1
e�rtðMþ ti�1� tiÞf ðtÞdt

n
þ
R ti

Nþti�1
e�rtðti� tÞf ðtÞdt

o
; N6 ti� ti�1 <M

2a0ðpÞþpa00ðpÞ½ �Ie
R ti

ti�1
e�rtðM�NÞf ðtÞdt; ti� ti�1 <N

8>>>>>>><
>>>>>>>:

ð14Þ

dICi

dp
¼

cIra0ðpÞ
R ti

Mþti�1

R ti
t e�rt�hðt�uÞf ðuÞdudt; ti � ti�1 P M

0; N 6 ti � ti�1 < M

0; ti � ti�1 < N

8><
>:

ð15Þ

d2ICi

dp2 ¼
cIra00ðpÞ

R ti
Mþti�1

R ti
t e�rt�hðt�uÞf uð Þdudt; ti � ti�1 P M

0; N 6 ti � ti�1 < M

0; ti � ti�1 < N

8><
>:

ð16Þ

and

dAe�rti�1

dp
¼ d2Ae�rti�1

dp2 ¼ 0; ð17Þ

respectively.
Since a0(p) < 0 and a00(p) > 0, it is clear from (11), (13) and (15)

that dTP(pjn,t)/dp = 0 has a solution if a(p) + pa0(p) < 0 (see
Appendix B for details). Further, if the marginal revenue with



Table 1
Optimal time schedule for Example 1.

i ti Ti Qi Case

1 0.1824 0.1824 36.78 1
2 0.2987 0.1163 107.89 1
3 0.3941 0.0954 156.49 1
4 0.4665 0.0724 159.49 2
5 0.5329 0.0664 173.03 2
6 0.5958 0.0629 181.89 2
7 0.6569 0.0612 186.92 2
8 0.7181 0.0611 188.34 2
9 0.7814 0.0633 185.26 2
10 0.8506 0.0692 176.36 2
11 1.0000 0.1494 189.67 1
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respect to selling price is decreasing (i.e. pa(p) is a strictly concave
function of p), it can be easily verified that

d2TPðpjn; tÞ
d2p

¼ d2

d2p

Xn

i¼1

SRi � PCi � HCi þ IEi � ICi � Ae�rti�1
� 	

< 0;

from (12), (14) and (16) (see Appendix C for details). Consequently,
TP(pjn,t) is a strictly concave function of p, and there exits a unique
solution that maximizes TP(pjn,t). From this, we can obtain the fol-
lowing result: once t is known, the optimal selling price, p�, can be
uniquely determined as a function of t. Thus, p� = popt(t) can be writ-
ten as a function of t. This results reduces the n dimensional prob-
lem of finding the optimal pricing and schedule to a n � 1
dimensional problem as follows:

Maximize TPðtjnÞ
subject to c < poptðtÞ 6 pu;

ti�1 < ti; i ¼ 1;2; . . . ;n;

t0 ¼ 0; tn ¼ H:

Note that if marginal revenue is an increasing function of p, then
selling price and revenue will always move in the same direction,
hence the retailer can realize an infinite profit by setting an infinite
p. It is impossible.

In this paper, the PSO with boundary constraints is adopted to
solve the model. A pseudo-objective function is yielded using an
exterior penalty function as follows:

/ðtjnÞ ¼ TPðtjnÞ � l
Xn

i¼1

max½0;popt � pu�
� 	2

(

þ max 0; c � popt
 �� 	2 þ max 0; ti�1 � ti½ �f g2

)
;

ð18Þ

where l is a large positive number, known as the penalty number.
(18) is then used to evaluate the fitness of individuals in a popula-
tion. Thus, for any given integer of n, the problem becomes

Maximize /ðtjnÞ
subject to t0 ¼ 0; tn ¼ H;

and the solution procedure for finding optimal pricing and replen-
ishment schedule is provided as follows.

Algorithm 1

Step 1 Let dimension d = n � 1, population size I = 10d,
Vmax = H, u1 = u2 = 2.05, l = 109, itermax = 1000 and
k = 0.

Step 2 xi
0: Randomly generate and sort d points in the range

0 to H, i = 1,2, . . . , I.
Step 3 v i

0: Randomly generate d points in the range �Vmax

and Vmax, i = 1,2, . . . , I.
Step 4 Evaluate the fitness of all particles using (10) and (18).
Step 5 Compare the performance of each individual to its

best performance so far
;I
pbesti
k¼

xi
k; if/ xi

kjn
� �

>/ pbesti
k�1jn

� 

pbesti

k�1; otherwise

8<
: ; i¼1;2;...
Step 6 Compare the performance of each particle to the glo-
bal best particle
gbestk ¼

arg max
16i6I

/ xi
kjn

� �
; if max

16i6I
/ xi

kjn
� �

> / gbesti
k�1jn

� 

gbesti

k�1; otherwise:

8>>><
>>>:
Step 7 Update v i
k; i ¼ 1;2; . . . ; I, according to (7) and (9).

Step 8 Update xi
kþ1; i ¼ 1;2; . . . ; I, according to (8).

Step 9 Terminate if the standard deviation of /(xkjn) < 10�5

or k = itermax, otherwise k = k + 1 and go to Step 4.
Let n� be the optimal replenishment number. To avoid using a
brute force enumeration for finding n�, we further simplify the
search process by providing an intuitively good starting value for
n�. Because a0(p) < 0, from Appendix B, dTP(pjn,t)/dp = 0 has a solu-
tion if and only if a(p) + pa0(p) < 0. Since marginal revenue,
a(p) + pa0(p), is a strictly decreasing function of p, the solution of
a(p) + pa0(p) = 0, say pl, is the lower bound for the optimal selling
price. Moreover, the holding cost per unit (including inventory
and deterioration costs) is h + Irc + hc. Substituting the above re-
sults into classical EOQ formula, we obtain an estimate of the num-
ber of replenishments as

n ¼ round integer of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ Irc þ hcÞH

R H
0 aðplÞf ðtÞdt

2A

s
: ð19Þ

It is obvious that searching for the optimal number of replenish-
ments by starting with n in (19) instead of n = 1 will reduce the
computational complexity significantly. Combining the above argu-
ments, we propose the following algorithm to solve the pricing and
replenishment scheduling problem.

Algorithm 2

Step 1 Choose two initial trial values of n�, say n as in (19)
and n + 1. Use Algorithm 1 to obtain ft�i g, and com-
pute the corresponding TP(n) and TP(n + 1),
respectively.

Step 2 If TP(n) 6 TP(n + 1), then compute TP(n + 2),TP
(n + 3), . . . , until we find TP(k) > TP(k + 1). Set n� = k
and stop.

Step 3 If TP(n) > TP(n + 1), then compute TP(n � 1),
TP(n � 2), . . . , until we find TP(k) > TP(k � 1). Set
n� = k and stop.

5. Computational results

5.1. Numerical examples

To illustrate the results, let us apply the proposed algorithms to
solve the following numerical examples. In Example 1, the demand
function follows the shape of a product life cycle. In Example 2, we
have a quadratic increasing demand and in Example 3 we have a
exponential decreasing demand. Algorithms 1 and 2 are imple-
mented on a personal computer with Intel Core 2 Duo under Mac
OS X 10.5.6 operating system using Mathematica version 7.
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Example 1. In this example, we consider the demand function for
a product life cycle which has been presented by Chen et al.
(2007a, 2007b):
a(p) = 5000 � 150p
 f ðtÞ ¼ t3�1ðH � tÞ2�1=Bð3;2Þ
i i
I TPi
I

0
17381.0

17381.5

17382.0

17382.5

17383.0

Fig. 3. The conve
h = 0.08
A = 50
 h = 2
 c = 10

H = 1
 r = 0.2
 Ir = 0.18

Ie = 0.12
 M = 30/365
 N = 15/365
Bða; bÞ ¼ ða�1Þ!ðb�1Þ!
ðaþb�1Þ! .
Solving a(p) + pa0(p) = 0 first, we obtain pl = 16.6667 and the
estimated number of replenishments n = 11 from (19). Then,
applying the Algorithms 1 and 2, we get TP(11) = 17382.1,
TP(12) = 17378.3 and TP(10) = 17378.8. Therefore, the optimal
number of replenishments is 11 and the corresponding optimal
selling price is 21.7570. The optimum solution found after 162 iter-
ations (109.903 s). The optimal time schedule is shown in Table 1.
The behavior of the inventory system over the planning horizon
and the convergence result of PSO algorithm for the optimal solu-
tion are depicted in Figs. 2 and 3, respectively.
Example 2. In this example, we consider the quadratic increasing
demand function which is proposed by Khanra and Chaudhuri
(2003):
a(p) = 100 � 3p
 f(t) = 25 + 10t + t2
 h = 0.08

A = 50
 h = 2
 c = 10

H = 1
 r = 0.2
 Ir = 0.18

Ie = 0.12
 M = 45/365
 N = 15/365
200 40
G

rgence result of PSO a
Solving a(p) + pa0(p) = 0 first, we obtain pl = 16.6667 and the

estimated number of replenishments n = 8 from (19). Then, apply-
ing the Algorithms 1 and 2, we get TP(8) = 10572.5, TP(9) = 10575.3
and TP(10) = 10571.5. Therefore, the optimal number of replenish-
ments is 9 and the corresponding optimal selling price is 21.7811.
The optimum solution found after 151 iterations (61.494 s). The
optimal time schedule is shown in Table 2. The behavior of the
inventory system over the planning horizon and the convergence
result of PSO algorithm for the optimal solution are depicted in
Figs. 4 and 5, respectively.

ventory system for Example 1.
Example 3. In this example, we redo an inventory situation pro-
posed by Chen and Chen (2004) while considering the trade credit
financing:
0
e

lg
a(p) = 300 � 120p
600 800
neration

orithm for TP(11) of Example 1.
f(t) = e�0.06t
1000
h = 0.2

A = 40
 h = 0.02
 c = 1

H = 12
 r = 0.02
 Ir = 0.18/12

Ie = 0.12/12
 M = 3/2
 N = 1
Note that the time unit is 1 month. The planning horizon is

1 year, which equals to 12 months. By applying (19), we obtain
the estimated number of replenishments n = 7. Then, applying
the Algorithms 1 and 2, we get TP(8) = 105.7, TP(7) = 122.4,
TP(6) = 133.1, TP(5) = 133.7 and TP(4) = 116.9. Therefore, the opti-
mal number of replenishments is 5 and the corresponding optimal
selling price is 1.9150. The optimum solution found after 141 iter-
ations (24.095 s). The optimal time schedule is shown in Table 3.
The behavior of the inventory system over the planning horizon
and the convergence result of PSO algorithm for the optimal solu-
tion are depicted in Figs. 6 and 7, respectively.



Table 2
Optimal time schedule for Example 2.

i ti Ti Qi Case

1 0.1342 0.1342 120.03 1
2 0.2505 0.1163 109.21 2
3 0.3642 0.1137 111.54 2
4 0.4755 0.1113 113.82 2
5 0.5845 0.1090 116.04 2
6 0.6914 0.1069 118.20 2
7 0.7962 0.1048 120.32 2
8 0.8990 0.1028 122.39 2
9 1.0000 0.1010 124.41 2

Table 3
Optimal time schedule for Example 3.

i ti Ti Qi Case

1 2.1073 2.1073 174.08 1
2 4.3432 2.2359 164.31 1
3 6.7238 2.3806 154.62 1
4 9.2684 2.5446 145.02 1
5 12.0000 2.7316 135.51 1

0 2.107 4.343 6.724 9.268 12
Time

135.51

174.08

Inventory level

Fig. 6. Graphical representation of inventory system for Example 3.
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In order to test the performance of PSO algorithm in our prob-
lem, we have performed 100 runs of the algorithm for each exam-
ple. The computational results are summarized in Table 4 and
Fig. 8. We can find that the maximal difference between the solu-
tions is within 0.006%, and thus, we are confident that using PSO
results in good solutions for our problem. The following inferences
can be made from the results in Examples 1–3.

1. When the demand is increasing with time, the length of the ith
replenishment cycle, Ti, is decreasing. Otherwise, the length of
the ith replenishment cycle, Ti, is increasing.

2. For the duration of the increasing demand, since the length of
the ith replenishment cycle is decreasing, the order quantity
is boosted as the trade credit policy changes from Case 1 to Case
2. But the order quantity increases with time under the same
trade credit policy.
0 0.134 0.25 0.364 0.476

109.21

124.41

Inventory level

Fig. 4. Graphical representation of in
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I
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10574.0

10574.5

10575.0
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10576.0

G

Fig. 5. The convergence result of PSO
3. For the duration of the decreasing demand, since the length of
the ith replenishment cycle is increasing, the order quantity is
boosted as the trade credit policy changes from Case 2 to Case
1. But the order quantity decreases with time under the same
trade credit policy.
0.585 0.691 0.796 0.899 1
Time

ventory system for Example 2.

0 600 800 1000

eneration

algorithm for TP(9) of Example 2.
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Fig. 7. The convergence result of PSO algorithm for TP(5) of Example 3.

Table 4
Experimental results for Examples 1–3.

Example Best Worst Mean Std

Example 1 17382.1 17382.1 17382.1 0.000027
Example 2 10575.3 10574.7 10575.2 0.116877
Example 3 133.712 133.712 133.712 0.000000
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5.2. Sensitivity analysis

Next, we study the sensitivity of the optimal solution to change
in the values of the different parameters associated with the mod-
el. Since we focus on the effect of trade credit in this paper, we will
ignore the effect of varying A and H. Applying the algorithm
procedures yields the results reported in Tables 5–7. The results
obtained for illustrative examples provide certain insights about
the problem studies. Some of them are as follows:

1. The net present value of the total profit increases if M and Ie

increase. However, it decreases if c, h, h, r, N and Ir increases.
2. The optimal replenishment number increases if h, h, r, M and Ie

increase. However, it is insensitive on the change in N and Ir.
17381.6 17381.8 17382.0 17382.2 17382.4

20

40

60

80

100

17381.6 17381.8 17382.0 17382.2 17382.4

20

40

60

80

100

Fig. 8. The histogram of the optimum solu
3. The net present value of the total profit is more sensitive on the
change in c, h, r and h. It implies that the effects of c, h, r and h on
the discounted total profit are significant.

4. The effect of varying M and Ie is negative correlated with vary-
ing N and Ic.

5. Large variation in the input parameters hardly have an effect on
the value of the number of orders made in most cases. This
implies that the algorithm developed in the paper is robust.

6. Concluding remarks

In this paper, we consider a retailer’s optimal pricing and lot-
sizing problem for deteriorating items with fluctuating demand
under trade credit financing. We have successfully formulated
the problem as a mixed-integer nonlinear programming model
and proposed a solution algorithm associated with it. In contrast
to the classical fixed selling price policy under trade credit, the
pricing policy in this model provides more flexibility by changing
price upward or downward. We can also use similar derivations
as in Appendix C to prove that @2TPðpjn; tÞ=@p2

i > 0 where
p = {p1,p2, . . . ,pn} and pi denotes the selling price per unit in the
ith replenishment cycle. Hence, the model in this paper not only
10574.6 10574.8 10575.0 10575.2 10575.4

10

20

30

40

50

tions obtained from 100 runs of PSO.



Table 5
Sensitivity analysis on TP� and n� for Example 1.

�50% �40% �30% �20% �10% 0% 10% 20% 30% 40% 50%

c 26032.5 24165.7 22367.7 20637.7 18975.9 17382.1 15856.3 14398.6 13009.0 11687.4 10433.8
10 11 11 11 11 11 11 11 11 11 11

h 17449.1 17435.0 17420.6 17407.5 17394.8 17382.1 17369.4 17356.7 17344.0 17331.9 17320.3
10 10 10 11 11 11 11 11 11 12 12

h 17407.9 17402.7 17397.6 17392.4 17387.2 17382.1 17376.9 17371.8 17366.6 17361.4 17356.3
11 11 11 11 11 11 11 11 11 11 11

r 18524.4 18288.5 18056.6 17828.2 17603.6 17382.1 17163.6 16948.1 16735.5 16526.4 16320.6
10 10 10 11 11 11 11 11 11 12 12

M 17295.4 17307.7 17321.0 17335.3 17354.4 17382.1 17411.1 17441.7 17472.2 17503.1 17534.5
10 10 10 10 11 11 11 11 11 11 11

N 17424.2 17413.9 17404.5 17396.0 17388.6 17382.1 17376.6 17372.1 17368.6 17366.1 17364.2
11 11 11 11 11 11 11 11 11 11 11

Ir 17385.5 17384.8 17384.1 17383.4 17382.7 17382.1 17381.4 17380.8 17380.2 17379.6 17379.0
11 11 11 11 11 11 11 11 11 11 11

Ie 17351.9 17356.9 17362.3 17368.1 17375.1 17382.1 17389.2 17396.3 17403.7 17412.2 17420.8
10 10 10 11 11 11 11 11 12 12 12

Table 6
Sensitivity analysis on TP� and n� for Example 2.

�50% �40% �30% �20% �10% 0% 10% 20% 30% 40% 50%

c 15913.0 14760.2 13650.9 12583.6 11558.4 10575.3 9634.3 8735.2 7878.7 7064.1 6291.6
8 8 9 9 9 9 9 9 9 9 9

h 10633.0 10620.9 10608.6 10596.7 10586.0 10575.3 10564.5 10553.9 10543.2 10533.1 10523.5
8 8 8 9 9 9 9 9 9 10 10

h 10597.1 10592.2 10588.3 10583.9 10579.6 10575.3 10570.6 10566.5 10562.1 10557.8 10553.4
8 8 9 9 9 9 9 9 9 9 9

r 11202.1 11072.6 10944.9 10819.0 10696.0 10575.3 10455.9 10338.3 10222.0 10108.6 9996.8
8 8 8 8 9 9 9 9 9 10 10

M 10479.3 10495.5 10512.6 10530.7 10549.7 10575.3 10605.4 10635.9 10666.5 10697.0 10727.6
8 8 8 8 8 9 9 9 9 9 9

N 10611.5 10603.5 10595.8 10588.4 10581.6 10575.3 10569.2 10563.5 10558.2 10553.4 10549.0
9 9 9 9 9 9 9 9 9 9 9

Ir 10575.3 10575.3 10575.3 10575.3 10575.3 10575.3 10575.2 10575.2 10575.2 10575.2 10575.2
9 9 9 9 9 9 9 9 9 9 9

Ie 10537.2 10544.2 10551.2 10558.3 10566.6 10575.3 10583.5 10592.0 10601.7 10611.8 10621.9
8 8 8 8 9 9 9 9 10 10 10

Table 7
Sensitivity analysis on TP� and n� for Example 3.

�50% �40% �30% �20% �10% 0% 10% 20% 30% 40% 50%

c 584.8 478.9 380.8 290.6 208.2 133.7 67.1 8.3 -42.7 -85.7 -109.4
5 5 5 5 5 5 5 5 5 5 3

h 141.2 139.7 138.2 136.7 135.2 133.7 132.2 130.8 129.3 128.1 126.8
5 5 5 5 5 5 5 5 6 6 6

h 226.8 205.1 186.8 169.2 151.5 133.7 118.3 103.3 88.3 73.3 58.3
4 4 5 5 5 5 6 6 6 6 7

r 150.1 146.7 143.4 140.1 136.9 133.7 130.6 127.6 124.8 122.1 119.5
5 5 5 5 5 5 5 5 6 6 6

M 129.8 130.6 131.4 132.2 132.9 133.7 134.5 135.3 136.1 137.1 138.5
5 5 5 5 5 5 5 5 5 6 6

N 135.4 135.0 134.6 134.3 134.0 133.7 133.5 133.4 133.2 133.2 133.2
5 5 5 5 5 5 5 5 5 5 5

Ir 134.4 134.2 134.1 134.0 133.8 133.7 133.6 133.5 133.3 133.2 133.1
5 5 5 5 5 5 5 5 5 5 5

Ie 133.4 133.5 133.5 133.6 133.7 133.7 133.8 133.8 133.9 133.9 134.0
5 5 5 5 5 5 5 5 5 5 5
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can be easily extended the single price policy to change selling
prices upward or downward periodically, but is ideal for manag-
ers to design marketing strategies to stay ahead of the challenges
their products are likely to face. Furthermore, the PSO algorithm is
selected in this paper because of its robustness, simplicity and
ease of implementation. The computational results indicated that
the PSO algorithm offers acceptable efficiency and accurate search
capability.

The proposed model can be extended in several ways. For in-
stance, we may generalize the model to allow for shortages, quan-
tity discounts and capacity constraint of owned warehouse. Also,
we could extend the deterministic demand function to stochastic
demand patterns. Finally, we could extend the sales environment
to an advance booking system.

Acknowledgements

The authors would like to thank the editor and anonymous
reviewers for their valuable and constructive comments, which
have led to a significant improvement in the manuscript. This



136 C.-Y. Dye, L.-Y. Ouyang / Computers & Industrial Engineering 60 (2011) 127–137
research was partially supported by the National Science Council of
the Republic of China under NSC-97-2221-E-366-006-MY2.
Appendix A

Case 1:N < M 6 ti � ti�1

In this case, since the length of replenishment period is larger
than the credit period, the retailer can continue to accumulate rev-
enue and earn interest with an annual rate Ie on it. Hence, the pres-
ent value of the interest earned in the ith replenishment period,
denoted by IEi1,i = 1,2, . . . ,n, is

IEi1 ¼ pIe

Z ti�1þM

ti�1þN
e�rt ti�1 þM � tð ÞaðpÞf ðtÞdt: ðA1Þ

After the time that account is settled, the retailer starts to pay for
the interest charges on the items in stocks with an annual rate Ir.
The present value of interest charges in the ith period as denoted
by ICi, i = 1,2, . . . ,n, is

ICi1 ¼ cIr

Z ti

ti�1þM
e�rte�ht

Z ti

t
ehuaðpÞf ðtÞdudt: ðA2Þ
Case 2:N 6 ti � ti�1 < M

As shown in Fig. 1, it is assumed that the length of replenishment
period is shorter than the credit period, the retailer pays no interest
charges (ICi2 = 0) and earns the interest during the period [ti�1 +
N,ti�1 + M]. Thus the present value of the interest earned in the
ith replenishment period, denoted by IEi2,i = 1,2, . . . ,n, is

IEi2 ¼ pIe

Z ti

ti�1þN
e�rtðti � tÞaðpÞf ðtÞdt þ pIe

Z ti

ti�1

e�rtðti�1 þM

� tiÞaðpÞf ðtÞdt: ðA3Þ
Case 3:ti � ti�1 < N 6M

From Fig. 1, it is assumed that the length of replenishment period is
shorter than the credit period, the retailer pays no interest charges
(ICi3 = 0) and earns the interest during the period [ti�1 + N,ti�1 + M).
Thus, the interest earned in the ith replenishment period, denoted
by IEi3,i = 1,2, . . . ,n, is given by

IEi3 ¼ pIe

Z ti

ti�1

e�rtðM � NÞaðpÞf ðtÞdt; i ¼ 1;2; . . . ;n: ðA4Þ
Appendix B

For any given feasible replenishment schedule, 0 = t0 < t1 <
t2 < � � � < tn�1 < tn = H, to acquire optimal selling price that maxi-
mizes TP(pjn,t), the value of p� should be selected to satisfy

dTP pjn; tð Þ
dp

¼ d
dp

Xn

i¼1

SRi � PCi � HCi þ IEi � ICi � Ae�rti�1
� 	

¼ 0:

After rearranging the terms in previous equation, we thus get

aðpÞ þ pa0ðpÞ½ �
Xn

i¼1

Z ti

ti�1

e�rtf ðtÞdt þ IeWi

( )

¼ a0ðpÞ
Xn

i¼1

ce�rti�1

Z ti

ti�1

ehðt�ti�1Þf ðtÞdt

(

þ
Z ti

ti�1

Z ti

t
e�rt�hðt�uÞf ðtÞdudt þ cIrXi

)
; ðB1Þ
where

Wi ¼

RMþti�1
Nþti�1

e�rtðM � t þ ti�1Þf ðtÞdt; ti � ti�1 P MR ti
ti�1

e�rtðM þ ti�1 � tiÞf ðtÞdt
n
þ
R ti

Nþti�1
e�rtðti � tÞf ðtÞdt

o
; N 6 ti � ti�1 < MR ti

ti�1
e�rtðM � NÞf ðtÞdt ti � ti�1 < N

8>>>>>>><
>>>>>>>:

and

Xi ¼

R ti
Mþti�1

R ti
t e�rt�hðt�uÞf ðuÞdudt; ti � ti�1 P M

0; N 6 ti � ti�1 < M

0; ti � ti�1 < N:

8><
>:

For any given feasible replenishment schedule, we have Wi P 0 and
Xi P 0. Since a0(p) < 0, it is obvious to see that (B1) holds if and only
if a(p) + pa0(p) < 0.

Appendix C

From (12), (14) and (16), we have

d2TP pjn; tð Þ
dp2 ¼ 2a0ðpÞ þ pa00ðpÞ½ �

Xn

i¼1

Z ti

ti�1

e�rtf ðtÞdt þ 2a0ðpÞ½

þ a00ðpÞ�IeYi � a00ðpÞ
Xn

i¼1

ce�rti�1

Z ti

ti�1

eh t�ti�1ð Þf ðtÞdt

(

þ
Z ti

ti�1

Z ti

t
e�rt�hðt�uÞf ðtÞdudt þ cIrZi

)
;

where

Yi ¼

RMþti�1
Nþti�1

e�rtðM � t þ ti�1Þf ðtÞdt; ti � ti�1 P MR ti
ti�1

e�rtðM þ ti�1 � tiÞf ðtÞdt
n
þ
R ti

Nþti�1
e�rtðti � tÞf ðtÞdt

o
; N 6 ti � ti�1 < MR ti

ti�1
e�rtðM � NÞf ðtÞdt; ti � ti�1 < N

8>>>>>>><
>>>>>>>:

and

Zi ¼

R ti
Mþti�1

R ti
t e�rt�hðt�uÞf ðuÞdudt; ti � ti�1 P M

0; N 6 ti � ti�1 < M

0; ti � ti�1 < N:

8><
>:

For any given feasible replenishment schedule, we have Yi P 0 and
Zi P 0. Since a00(p) > 0, if 2a0(p) + pa00(p) < 0, then we have
d2TP(pjn, t)/dp2 < 0.
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